## 21819 3 Hours / 100 Marks Seat No. Instructions – (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4) Figures to the right indicate full marks. (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall. Marks 12 1. a) Attempt any THREE of the following: Draw a neat sketch of wire cut EDM. Explain the (i) working principle. (ii) State and explain any four process parameters of Laser beam machining. (iii) Differentiate between open loop and closed loop control system. (iv) State the advantages and limitations of broaching machine. 6 Attempt any ONE of the following: Draw a set up for abrasive jet machining. Explain the working principle and its process parameters.

P.T.O.

Explain with sketch axis identifications for CNC lathe

and VMC.

### 2. Attempt any FOUR of the following:

16

- a) State any four reasons for the need of non-traditional machining processes.
- b) Define a part programme. Give a word address format for writing an instruction along with meaning of each term.
- c) Explain with sketch up milling and down milling.
- d) State and explain various indexing methods.
- e) State difference between dielectric fluid and electrolyte.

### 3. Attempt any <u>TWO</u> of the following:

**16** 

- a) Explain working of plasma arc machining. State advantages, disadvantages and applications.
- b) Write a part programme for milling a given component as shown in Fig. No. 1. The end mill cutter diameter is 10 mm. Use feed rate as 100 mm/min and spindle speed as 1000 rpm. Assume suitable data if necessary.

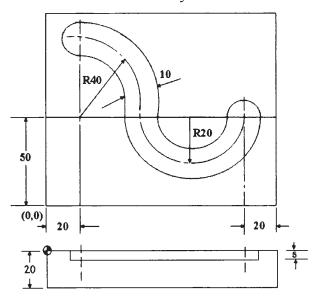



Fig. No. 1

- c) (i) Differentiate between pull broach and push broach.
  - (ii) Draw a nomenclature of a plain milling cutter. Label all the elements.

| 175 |    |                                                                                                            | arks |
|-----|----|------------------------------------------------------------------------------------------------------------|------|
| 4.  | a) | Attempt any THREE of the following:                                                                        | 12   |
|     |    | (i) Explain with sketch gear hobbing process.                                                              |      |
|     |    | (ii) What is gear shaving? Explain with sketch.                                                            |      |
|     |    | (iii) Explain wheel dressing and truing.                                                                   |      |
|     |    | (iv) What information is collected in a maintenance record while carrying out maintenance of an equipment. |      |
|     | b) | Attempt any ONE of the following:                                                                          | 6    |
|     |    | (i) Draw a labeled sketch of column and knee type milling machine. State function of any four elements.    |      |
|     |    | (ii) How well you specify a grinding wheel? Explain with a suitable example.                               |      |
| 5.  |    | Attempt any <b>FOUR</b> of the following:                                                                  | 16   |
|     | a) | Classify boring machines. State different types of tools used.                                             |      |
|     | b) | State advantages and applications of turret lathe.                                                         |      |
|     | c) | Explain gang milling and straddle milling.                                                                 |      |
|     | d) | What is centre less grading? Explain any one with neat sketch.                                             |      |
|     | e) | Explain the working principle of honing. State its applications.                                           |      |
|     | f) | What are different types of maintenance? Give suitable example of each.                                    |      |
| 6.  |    | Attempt any <b>FOUR</b> of the following:                                                                  | 16   |
|     | a) | Explain the concept of dry run and jog mode.                                                               |      |
|     | b) | Explain how a capstan lathe is different from a simple lathe.                                              |      |
|     | c) | Sketch and label basic parts of a horizontal broaching machine.                                            |      |
|     | d) | Enlist grinding wheel safety precautions.                                                                  |      |
|     | e) | Explain repair cycle analysis with a suitable example.                                                     |      |

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

#### **SUMMER – 19 EXAMINATION**

Subject Name: Advanced Manufacturing Process Model Answer Subject Code: 17527

### Important Instructions to examiners:

- The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| ).<br>Io. | Sub<br>Q.<br>N. | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marking<br>Scheme                                                                                   |
|-----------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| a         | 140             | Attempt any THREE of the Following                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                  |
|           | (i)             | Draw neat sketch of wire cut EDM. Explain the working Principle.                                                                                                                                                                                                                                                                                                                                                                               | 04                                                                                                  |
|           | Ans             | Working Principle:  The basic mechanism of metal removal in WEDM is identical to that in die sinking type EDM. Instead of moving electrode, the electrode in this process is a moving wire of CU or brass. A vertically oriented wire is fed into the work piece continuously travelling from a supply spool to take a spool, so that it is continuously renewed, since it will get worn out during the process  Coolant  Figure: Wire Cut EDM | 02<br>Marks<br>For<br>Working<br>Principle<br>&<br>02<br>Marks<br>For<br>Neat<br>Labelled<br>Sketch |
|           |                 | State and explain any four process parameters of leaser Beam Machines.                                                                                                                                                                                                                                                                                                                                                                         | 04                                                                                                  |

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

|    | Ans                                                                                                                      | Process parar                   | meters of Laser Beam Machining:                                                                                             |                                          | 02          |  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|--|--|--|--|--|--|
|    |                                                                                                                          | a) Intensity of                 | lagar baami Dy faaysing a lagar baam i                                                                                      | in a spot of 0.01 m a lit can give power | Marks       |  |  |  |  |  |  |
|    |                                                                                                                          |                                 |                                                                                                                             | in a spot of 0.01 m 2, it can give power | For<br>List |  |  |  |  |  |  |
|    | density of 100000kW/ cm2. The focused beam radius is directly proportional to the laser wavelength and the focal length. |                                 |                                                                                                                             |                                          |             |  |  |  |  |  |  |
|    |                                                                                                                          | wavelength an                   | a the focal length.                                                                                                         |                                          | of          |  |  |  |  |  |  |
|    |                                                                                                                          | b) Dulco durati                 | on of laser beam: The pulse durations                                                                                       | about 6 to 12 nulsa/min. It depends      | four        |  |  |  |  |  |  |
|    |                                                                                                                          | ,                               | <u>*</u>                                                                                                                    | <b>1</b> 1                               | Parameters  |  |  |  |  |  |  |
|    |                                                                                                                          | upon me appn                    | cation to be performed like welding, dr                                                                                     | innig, cutting etc.                      | &           |  |  |  |  |  |  |
|    |                                                                                                                          | c) Focal length                 | a: It is the distance between laser beam                                                                                    | and the workniege. If the laser is very  | 02          |  |  |  |  |  |  |
|    |                                                                                                                          | ,                               |                                                                                                                             | curs for small focal length in the metal | Marks       |  |  |  |  |  |  |
|    |                                                                                                                          |                                 | mportant in drilling operation.                                                                                             | curs for sinan focal length in the metal | For         |  |  |  |  |  |  |
|    |                                                                                                                          | cutting It is i                 | important in drining operation.                                                                                             |                                          | Their       |  |  |  |  |  |  |
|    |                                                                                                                          | d) Mode of las                  | er operation: It can operate in continue                                                                                    | ous mode and pulsed wave mode            | Explanation |  |  |  |  |  |  |
|    | (iii)                                                                                                                    |                                 | between open loop and closed loop                                                                                           | ·                                        | 04          |  |  |  |  |  |  |
|    | Ans                                                                                                                      | Parameter                       | Open loop                                                                                                                   | Closed loop                              |             |  |  |  |  |  |  |
|    |                                                                                                                          | Design                          | Simple                                                                                                                      | Complex                                  |             |  |  |  |  |  |  |
|    |                                                                                                                          | Feedback                        | No feedback element                                                                                                         | Feedback system is present               |             |  |  |  |  |  |  |
|    |                                                                                                                          | Input                           | The input is directly given to the                                                                                          | The input and feedback signal is         | 01          |  |  |  |  |  |  |
|    |                                                                                                                          |                                 | MCU                                                                                                                         | given to the comparator which            |             |  |  |  |  |  |  |
|    |                                                                                                                          |                                 |                                                                                                                             | sends the required signal to the         | Mark        |  |  |  |  |  |  |
|    |                                                                                                                          |                                 |                                                                                                                             | MCU                                      | Each        |  |  |  |  |  |  |
|    |                                                                                                                          | Output                          | The output may not be as desired                                                                                            | The output given is exactly as           | Any         |  |  |  |  |  |  |
|    |                                                                                                                          | Juiput                          | The output may not be as desired                                                                                            | desired                                  | 4<br>Points |  |  |  |  |  |  |
|    |                                                                                                                          | Time                            | Time required for processing is                                                                                             | Time required for processing is          |             |  |  |  |  |  |  |
|    |                                                                                                                          |                                 | less                                                                                                                        | More                                     |             |  |  |  |  |  |  |
|    |                                                                                                                          | Cost                            |                                                                                                                             | Expensive                                |             |  |  |  |  |  |  |
|    |                                                                                                                          | Cost                            | Cheaper                                                                                                                     | Expensive                                |             |  |  |  |  |  |  |
|    | (iv)                                                                                                                     | State the adv                   | <br>antages and limitations of Broachin                                                                                     | ng Machine.                              | 04          |  |  |  |  |  |  |
|    | Ans                                                                                                                      |                                 |                                                                                                                             |                                          |             |  |  |  |  |  |  |
|    |                                                                                                                          | Advantages (                    |                                                                                                                             |                                          | 01/2        |  |  |  |  |  |  |
|    |                                                                                                                          |                                 | is faster than other machining operati                                                                                      |                                          | Mark        |  |  |  |  |  |  |
|    |                                                                                                                          | 2) It enables h                 | higher rate of production with more a                                                                                       | ccuracy & finish than other machining    | for         |  |  |  |  |  |  |
|    |                                                                                                                          | operations                      |                                                                                                                             |                                          | Each        |  |  |  |  |  |  |
|    |                                                                                                                          | 3) It has longe                 | er tool life than other cutting tools. To                                                                                   | ool cost per job is low                  |             |  |  |  |  |  |  |
|    |                                                                                                                          | 4) Both rough                   | ing & finishing operations are done b                                                                                       | by single tool                           | Advantage   |  |  |  |  |  |  |
|    |                                                                                                                          |                                 | eable components can be produced at                                                                                         | •                                        | 1           |  |  |  |  |  |  |
|    |                                                                                                                          |                                 | operation does not require highly skil                                                                                      |                                          | and         |  |  |  |  |  |  |
|    |                                                                                                                          | T                               | (A T)                                                                                                                       |                                          | 01/2        |  |  |  |  |  |  |
|    |                                                                                                                          | Limitations: (                  | · · · · · · · · · · · · · · · · · · ·                                                                                       |                                          | Mark        |  |  |  |  |  |  |
|    |                                                                                                                          | 1) High tool c<br>2) Very large |                                                                                                                             | for                                      |             |  |  |  |  |  |  |
|    |                                                                                                                          |                                 | Each                                                                                                                        |                                          |             |  |  |  |  |  |  |
|    |                                                                                                                          | *                               | es to be broach cannot have an obstru                                                                                       |                                          | Limitation  |  |  |  |  |  |  |
|    |                                                                                                                          |                                 | unt of stock (Material removal) cann                                                                                        | ot be removed                            | Limitation  |  |  |  |  |  |  |
|    |                                                                                                                          | 5) Work piece                   | es must be rigidly supported                                                                                                |                                          |             |  |  |  |  |  |  |
| 1b |                                                                                                                          | Attempt any                     | ONE of the following                                                                                                        |                                          | 06          |  |  |  |  |  |  |
|    | (i)                                                                                                                      | Draw the set                    | up for Abrasive Jet Machining. Ex                                                                                           | xplain the working principle and its     | 06          |  |  |  |  |  |  |
|    |                                                                                                                          | process para                    | Draw the set up for Abrasive Jet Machining. Explain the working principle and its process parameters. WW 1116 X 2111 S CO11 |                                          |             |  |  |  |  |  |  |

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

## ns | Abrasive Jet Machining:

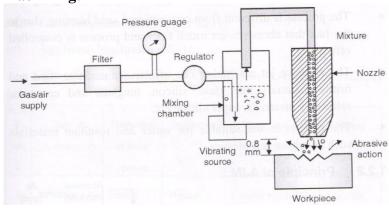



Figure: Set up of Abrasive Jet Machining

### **Working Principle:**

In Abrasive Jet Machining (AJM), usually air is directly taken from atmosphere, cleaned it and compressed it to a high pressure with the help of compressor. Loose abrasive particles having predefined average size are mixed with this pressurized gas in certain proportion (mixing ratio) and the mixture is then allowed to strike the work surface in the form of jet at a particular incident angle at very high velocity. A nozzle converts the hydraulic energy (pressure) of the jet-abrasive mixture into kinetic energy (velocity). After cutting action, grits leave the machining zone, which are then collected and disposed safely (usually, abrasive grits cannot be reused as grits lose sharpness after first impact).

#### **Process Parameters:**

#### (1) Abrasive Mass Flow Rate:

Mass flow rate of the abrasive particles is a major process parameter that influences the metal removal rate in abrasive jet machining. In AJM, mass flow rate of the gas (or air) in abrasive jet is inversely proportional to the mass flow rate of the abrasive particles.

Due to this fact, when continuously increasing the abrasive mass flow rate, Metal Removal Rate (MRR) first increases to an optimum value (because of increase in number of abrasive particles hitting the workpiece) and then decreases. However, if the mixing ratio is kept constant, Metal Removal Rate (MRR) uniformly increases with increase in abrasive mass flow rate.

#### (2) Nozzle Tip Distance:

Nozzle Tip Distance (NTD) is the gap provided between the nozzle tip and the workpiece. Upto a certain limit, Metal Removal Rate (MRR) increases with increase in nozzle tip distance. After that limit, MRR remains constant to some extent and then decreases. In addition to metal removal rate, nozzle tip distance influences the shape and diameter of cut. For optimal performance, a nozzle tip distance of 0.25 to 0.75 mm is provided.

#### (3) Gas Pressure:

Air or gas pressure has a direct impact on metal removal rate. In abrasive jet machining, metal removal rate is directly proportional to air or gas pressure.

#### (4) Velocity of Abrasive Particles:

Whenever the velocity of abrasive particles is increased, the speed at which the abrasive particles hit the workpiece is increased. Recause of this reason in abrasive jet

Marks for Sketch 02 Marks for Working **Principle** & 01 Marks for List of Process **Parameters** & 01 Mark for Explanation of Any One

Parameter

02

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

machining, metal removal rate increases with increase in velocity of abrasive particles. (5) Mixing Ratio: Mixing ratio is a ratio that determines the quality of the air-abrasive mixture in Abrasive Jet Machining (AJM). It is the ratio between the mass flow rate of abrasive particles and the mass flow rate of air (or gas). When mixing ratio is increased continuously, metal removal rate first increases to some extent and then decreases. (6) Abrasive Grain Size: Size of the abrasive particle determines the speed at which metal is removed. If smooth and fine surface finish is to be obtained, abrasive particle with small grain size is used. If metal has to be removed rapidly, abrasive particle with large grain size is used. Explain with sketch axis identification for CNC lathe and VMC (ii) 06 **CNC Lathe:** Ans Figure: Axis Identification for CNC Lathe In lathe only two axes are there; Z axis--- The axis of rotation of the workpiece is specified by Z axis 02 X axis--- The radial location of the cutting tool is represented by X axis Marks for VMC: Each Neat Labelled Sketch & And 01 Mark for its **Explanation** Figure: Axis Identification for CNC Lathe (1) Z axis---1) Main spindle axis. In VMC Z(+ve) means cutter movement upward. In VMC Z(-ve) means cutter movement downward. (2) X axis---1) Horizontal –work holding device. X (+ve) means as being to the right when looking from the spindle towards column. X (-ve) means as being to the left when looking from the spindle towards column.

(3) Y axis—It is perpendicular to X and Z axes. It indicates cross travel of the work table

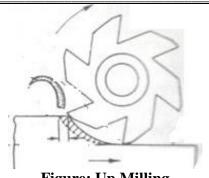
Attempt any FOUR of the

Page No: 01/20

16



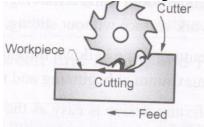
(Autonomous)


(ISO/IEC - 27001 - 2013 Certified)

| (a) | State any four reasons for the need of non-traditional machining processes.                 | 04            |
|-----|---------------------------------------------------------------------------------------------|---------------|
| Ans | Need of Non-Traditional Machining Processes: (Any four)                                     |               |
|     | 1) Replacement of existing manufacturing methods by more efficient & quicker methods.       | 01            |
|     | 2) Achievement of higher accuracies & quality of surface finish                             | Mark          |
|     | 3) Adaptability of cheaper materials in place of costlier one.                              | for           |
|     | 4) To do machining operations for "Hard to machine" materials like tungsten, uranium        | Each          |
|     | 5) To do machining operations on intricate & thin workpieces economically.                  | Point         |
|     | 6) Development of new materials requires new methods                                        |               |
| (b) | Define Part Programming. Give a word address format for writing an instruction              | 04            |
|     | along with the meaning of each term.                                                        | -             |
| Ans | Part Program:                                                                               |               |
|     | Part programming – Part program defined as the way in which the blocks of instructions      |               |
|     | are planned and written such that after its execution on the CNC machine the required       | 01            |
|     | shape is obtained on the work piece in minimum possible time.                               | Mark          |
|     | OR                                                                                          | for           |
|     | Part program is a set of instructions the machine tool about the processing steps to be     | Definition    |
|     | performed the manufacture of component.                                                     | &             |
|     |                                                                                             | 03            |
|     | Word Address Format                                                                         | Marks         |
|     | For Example:-                                                                               | for           |
|     | N001 G01 X2.0 Y5.5 Z-3.0 F100;                                                              | Suitable      |
|     | N002 M06 T0101;                                                                             | Example       |
|     | Meaning                                                                                     | and           |
|     | N001 – Block No. 001                                                                        | its           |
|     | G01 – Preparatory Function(Linear Interpolation)                                            | Appropriate   |
|     | X2.0, Y5.5, Z-3.0 – XYZ Axis Movement.                                                      | Meaning       |
|     | F100 – Feed Rate in mm/min                                                                  | meaning       |
|     | M06 – Miscellaneous Function(Tool Change)                                                   |               |
|     | T0101 – Tool No. 01 with offset No 01                                                       |               |
|     | ; - End of Block                                                                            |               |
| (c) | Explain with neat sketch Up Milling and Down Milling                                        | 04            |
| Ans | Up milling:                                                                                 |               |
|     | it is the conventional milling process which is most commonly used. In this, the            |               |
|     | material is removed by the cutter which is rotating against the direction of travel of the  |               |
|     | work piece. As shown in fig., the thickness of the chip in the up milling is minimum at     | 01            |
|     | the beginning of the cut and it reaches maximum when the cutter terminates. As the chip     | Mark          |
|     | thickness per tooth is not uniform, the cutting force in upmilling increases from zero to   | for           |
|     | maximum. The cutting force is directed upwards and it tends to lift the work from the       | Each          |
|     |                                                                                             | Lacri         |
|     | fixture. Due to this, difficulty is experienced in pouring coolant just on the cutting edge | Figure        |
|     | from the chip begins. As the cutter progresses, the chip gets accumulated at the cutting    | Figure<br>And |
|     |                                                                                             | And           |
|     | from the chip begins. As the cutter progresses, the chip gets accumulated at the cutting    | _             |

www.truexams.com




(Autonomous) (ISO/IEC - 27001 - 2013 Certified)



**Figure: Up Milling** 

### **Down Milling:**

It is also known as climb milling. In this, material is removed by the cutter which is rotated in the same direction of travel of the work piece. As shown in fig., the thickness of the chip is maximum when the tooth begins the cut and it reduces to minimum when the cut terminates. The cutter tooth starts removing the metal immediately on reaching the work piece, without sliding. The cutting force in down milling is maximum when the tooth begins its cut and is minimum when the tooth leaves the work. Here the chips are disposed off easily and do not interfere with the work. Fixture design is easier as the cutting force tries to seat the work firmly in work holding devices. Coolant can be poured directly at the cutting zone. This results in improved surface finish. If there is any backlash in feed screw, it causes vibrations and damages work surface.



|            | Feed                                                                                        |                |
|------------|---------------------------------------------------------------------------------------------|----------------|
|            | Figure: Down Milling.                                                                       |                |
| <b>(d)</b> | State and explain various indexing methods.                                                 | 04             |
| Ans        | (1) Plain or Simple Indexing.                                                               | 02             |
|            | In plain indexing the dividing head spindle is moved by turning the index crank. As the     | Marks          |
|            | shaft carrying the crank has a single threaded worm which mesh with the worm gear           | for            |
|            | having 40 teeth, 40 turns of the crank are necessary to rotate the index head spindle       | List           |
|            | though one revolution. To facilitate indexing to fractions of a turn, index plates are used | of             |
|            | to cover practically all numbers. Index plates with circles of holes are as follows:-       | Indexing       |
|            | Plate No. 1 – 15, 16, 17, 18, 19, 20                                                        | Method         |
|            | Plates No. 2 – 21, 23, 27, 29, 31, 33.                                                      | &              |
|            | Plate No. 3 – 37, 39, 41, 43, 47, 49.                                                       | 02             |
|            | With the three index plate supplied, simple indexing can be used for all divisions up to    | Marks          |
|            | 50, even numbers up to 100 except 96. The formula for index crank movement is given         | Explanation of |
|            | below:-                                                                                     | Any            |
|            | Index Crank Movement = $40/N$ where, N= number of divisions required.                       | One            |
|            |                                                                                             |                |

www.truexams.com

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

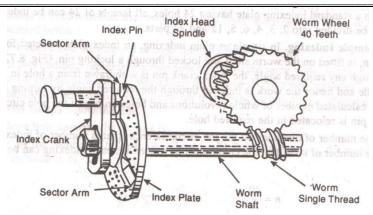



Figure: Plain or Simple Indexing

#### (2) Universal Dividing Head:

The worm gear has 40 teeth and the worm has simple thread. Crank is directly attached with the worm. If we revolve crank by 40 revolutions the spindle attached with worm gear will revolve by only one revolution and one complete turn of the crank will revolve the spindle only by  $1/40^{th}$  revolution (turn). In order to turn the crank precisely a fraction of a revolution, an indexing plate is used. An indexing plate is like a circular disc having concentric rings of different number of equally spaced holes. Normally indexing plate is kept stationary by a lock pin. A spring loaded pin is fixed to the crank which can be fixed into any hole of indexing plate. The turning movement of the work piece is stably controlled by the movement of crank.

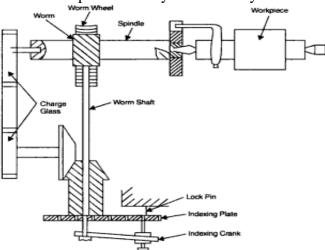



Figure: Universal Dividing Head

#### (3) Optical Dividing Head:

It is used for precise angular indexing during machining. The mechanism comprises a worm gear which is keyed to the spindle and may be rotated by a worm. A circular glass scale graduated in 10 division is rigidly mounted on the worm wheel. Any movement of the spindle effected by rotating the worm is read off by means of a microscope fitted on the dividing head body, the eye piece has a scale having 60 divisions & each division is equivalent to 1' movement of circular scale

www.truexams.com



(Autonomous)
(ISO/IEC - 27001 - 2013 Certified)

|   |     | (ISO/IEC - 27001 - 2013 Certified)                                                                                                                                   |                |  |  |  |  |  |  |  |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|--|
|   |     | Figure: Optical Dividing Head                                                                                                                                        |                |  |  |  |  |  |  |  |
|   | (e) | State difference between dielectric fluid and electrolyte                                                                                                            | 04             |  |  |  |  |  |  |  |
|   | Ans | S. N. Dielectric Fluid Electrolyte                                                                                                                                   |                |  |  |  |  |  |  |  |
|   |     | 1 It is used as a conducting medium in It is used as a conducting medium in                                                                                          | 01<br>Mark     |  |  |  |  |  |  |  |
|   |     | EDM ECM                                                                                                                                                              | Each           |  |  |  |  |  |  |  |
|   |     | Tool wear takes place in dielectric The electrolyte is selected in such a way that there is no tool wear.                                                            | for            |  |  |  |  |  |  |  |
|   |     | 3 It act as a conductor and insulator It always provide passage for the                                                                                              | Any<br>Four    |  |  |  |  |  |  |  |
|   |     | both. supply of electricity.                                                                                                                                         | Four<br>Points |  |  |  |  |  |  |  |
|   |     | 4 It may or may not be corrosive in It should be non-corrosive in nature.                                                                                            | 1 0 11115      |  |  |  |  |  |  |  |
| 3 | a   | Explain working of Plasma Arc Machining. State Advantages, Disadvantages and Application                                                                             | 08             |  |  |  |  |  |  |  |
|   |     | (03 Marks for Working, 02 Marks For Sketch & 01 Mark For Each Advantages,                                                                                            |                |  |  |  |  |  |  |  |
|   |     | disadvantages and Application )                                                                                                                                      |                |  |  |  |  |  |  |  |
|   |     | Plasma Arc Machining:                                                                                                                                                | 3              |  |  |  |  |  |  |  |
|   |     | Plasma-arc machining (PAM) is a metal removal process in which metal is removed by                                                                                   | Marks          |  |  |  |  |  |  |  |
|   |     | directing high about 11000 to 30000 degree centigrade ionized gas on the work piece.                                                                                 | C              |  |  |  |  |  |  |  |
|   |     | The principle PAM is shown in the figure. In this process, plasma torch is used in which                                                                             | for            |  |  |  |  |  |  |  |
|   |     | a volume of a gas such as H2,N2,O2 is passed through a small chamber in which high frequency spark is maintained between cathode and anode. The plasma jet melts the | Working,       |  |  |  |  |  |  |  |
|   |     | work piece material. The depth of hat zone depends on the work material, its thickness and cutting speed.                                                            | 02             |  |  |  |  |  |  |  |
|   |     | → Electrode                                                                                                                                                          | Marks          |  |  |  |  |  |  |  |
|   |     |                                                                                                                                                                      | For            |  |  |  |  |  |  |  |
|   |     | Supply Gas like H <sub>2</sub> N <sub>2</sub>                                                                                                                        | Sketch         |  |  |  |  |  |  |  |
|   |     | (+) Insulator                                                                                                                                                        |                |  |  |  |  |  |  |  |
|   |     |                                                                                                                                                                      | 01             |  |  |  |  |  |  |  |
|   |     | Anoue                                                                                                                                                                | Mark           |  |  |  |  |  |  |  |
|   |     | Work piece                                                                                                                                                           | For            |  |  |  |  |  |  |  |
|   |     | Figure: Plasma Are Machining Process                                                                                                                                 | Each           |  |  |  |  |  |  |  |
|   |     | Page No:                                                                                                                                                             | 04 / 20        |  |  |  |  |  |  |  |

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

|   | A dyon    | tages of P  | A M.                                                                                                                               |           |                                                           | Advantages,   |  |  |  |  |  |
|---|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------|---------------|--|--|--|--|--|
|   |           | _           |                                                                                                                                    | utting e  | e.g. 6 mm mild steel plate can be cut at a speed of 3     | Disadvantages |  |  |  |  |  |
|   | 1.        | m/min.      | cu or c                                                                                                                            | uttilig ( | .g. o min mind steer plate can be cut at a speed of 3     | and           |  |  |  |  |  |
|   | 2.        |             | ffective                                                                                                                           | on any    | metal regardless its hardness                             | ana           |  |  |  |  |  |
|   |           |             |                                                                                                                                    | -         | ontaminants are obtained in the process.                  | Application   |  |  |  |  |  |
|   |           |             |                                                                                                                                    |           | een tool and workpiece                                    |               |  |  |  |  |  |
|   |           |             |                                                                                                                                    |           | <del>-</del>                                              |               |  |  |  |  |  |
|   |           |             | t is three to eight times faster than oxy fuel cutting  Profile cutting of stainless steel can be very easily done by this process |           |                                                           |               |  |  |  |  |  |
| ı |           |             | intages of PAM:                                                                                                                    |           |                                                           |               |  |  |  |  |  |
|   |           | O           | Due to high heat, metallurgical change on the workpiece surface                                                                    |           |                                                           |               |  |  |  |  |  |
|   |           |             | _                                                                                                                                  |           | necessary for the operator and those in nearby working    |               |  |  |  |  |  |
|   |           | area        |                                                                                                                                    |           |                                                           |               |  |  |  |  |  |
|   | 3.        | It increase | es cost o                                                                                                                          | of proce  | SS                                                        |               |  |  |  |  |  |
|   |           |             |                                                                                                                                    | -         | t will lead noise, fume and arc glare hence water cooling |               |  |  |  |  |  |
|   |           | is needed   |                                                                                                                                    |           |                                                           |               |  |  |  |  |  |
| A | Applic    | ations of   | PAM:                                                                                                                               |           |                                                           |               |  |  |  |  |  |
|   |           |             |                                                                                                                                    | els, Sta  | inless Steels, Aluminium and its alloys                   |               |  |  |  |  |  |
|   | 2.        | Used for    | turning                                                                                                                            | and mil   | ling of difficult to machine materials                    |               |  |  |  |  |  |
|   | 3.        | Used for    | removir                                                                                                                            | ng of ga  | tes and risers from a casting.                            |               |  |  |  |  |  |
|   | 4.        | Used in     | underwa                                                                                                                            | ater ope  | erations like, in shipyards, chemical industries, nuclear |               |  |  |  |  |  |
|   |           | power pla   | ınt, etc.                                                                                                                          |           |                                                           |               |  |  |  |  |  |
|   | 5.        | Used for    | Used for cutting of hot extrusions dies.                                                                                           |           |                                                           |               |  |  |  |  |  |
|   |           |             | _                                                                                                                                  |           | lling a given component as shown in fig. no 1. The        |               |  |  |  |  |  |
|   |           |             |                                                                                                                                    |           | nm. Use feed rate as 100mm/minand spindle speed as        | 08            |  |  |  |  |  |
|   |           |             |                                                                                                                                    |           | a wherever necessary.                                     |               |  |  |  |  |  |
|   |           | •           |                                                                                                                                    |           | 06 Marks for Correct Program)                             |               |  |  |  |  |  |
|   | į Note 1  | 2хріапано   | т ој сос                                                                                                                           | ies not i | necessary]                                                |               |  |  |  |  |  |
|   |           |             |                                                                                                                                    |           |                                                           |               |  |  |  |  |  |
|   |           |             |                                                                                                                                    |           | P1, P2                                                    |               |  |  |  |  |  |
|   | Point     | X           | Y                                                                                                                                  | Z         |                                                           |               |  |  |  |  |  |
|   | P0        | 0.0         | 0.0                                                                                                                                | 5.0       | R40 10                                                    |               |  |  |  |  |  |
|   | PU        | 0.0         | 0.0                                                                                                                                | 5.0       | P4, P5                                                    |               |  |  |  |  |  |
|   | P1        | 20.0        | 90.0                                                                                                                               | 5.0       | P3 P                  |               |  |  |  |  |  |
|   |           |             |                                                                                                                                    |           |                                                           |               |  |  |  |  |  |
|   | <b>P2</b> | 20.0        | 90.0                                                                                                                               | -5.0      | 50                                                        | 02 Marks      |  |  |  |  |  |
|   | P3        | 60.0        | 50.0                                                                                                                               | -5.0      |                                                           | for           |  |  |  |  |  |
|   | 13        | 00.0        | 30.0                                                                                                                               | -3.0      |                                                           | Coordinates / |  |  |  |  |  |
|   | P4        | 80.0        | 50.0                                                                                                                               | -5.0      | (0,0) PO X                                                | points        |  |  |  |  |  |
|   |           | 00.0        | <b>=</b> 0.0                                                                                                                       | - 0       | 1 20                                                      | points        |  |  |  |  |  |
|   | P5        | 80.0        | 50.0                                                                                                                               | 5.0       | 5                                                         |               |  |  |  |  |  |
|   |           |             |                                                                                                                                    |           | 20                                                        |               |  |  |  |  |  |
|   | D         |             |                                                                                                                                    |           |                                                           |               |  |  |  |  |  |
| J | Progra    | ım:         | <b>T</b> / <b>T T</b>                                                                                                              | 7**7      | trugyama com                                              |               |  |  |  |  |  |
|   |           |             | VV V                                                                                                                               | V VV      | .truexams.com                                             | 01/20         |  |  |  |  |  |



(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

|   |     |        | Block<br>No        | CNC Codes Used                                            | <b>Explanation of Codes</b>                                                                 |                        |
|---|-----|--------|--------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------|
|   |     |        |                    | O1234;                                                    | Program No.                                                                                 |                        |
|   |     |        | N1                 | G28 U0.0 V0.0 W0.0;                                       | Return to Reference Position                                                                |                        |
|   |     |        | N2                 | M03 M08 S1000;                                            | Spindle Start Clockwise with 1000 RPM, Coolant ON.                                          |                        |
|   |     |        | N3                 | G90G21G94;                                                | Absolute Programming, Metric Mode, Feed in mm/min                                           |                        |
|   |     |        | N4                 | G00 X0.0 Y0.0 Z5.0;                                       | Move End Mill Tool of Diameter 10mm to Point P0                                             |                        |
|   |     |        | N5                 | G00 X20.0 Y90.0;                                          | Move End Mill Tool to Point P1                                                              | and                    |
|   |     |        | N6                 | G01 Z -5.0 F100;                                          | Move End Mill to Point P2 with feed of 100mm/min i.e. 5mm depth of cut below the surface of | 06 Marks               |
|   |     |        | NZ                 | C02 V (0 0 V 50 0)                                        | workpiece.  Move the tool to Point P3 in                                                    | for                    |
|   |     |        | N7                 | G02 X60.0 Y50.0;                                          | clockwise Circular Interpolation                                                            | Correct                |
|   |     |        | N8                 | G03 X80.0 Y50.0;                                          | Move the tool to Point P4 in Counter clockwise Circular Interpolation                       | Program                |
|   |     |        | N9                 | G01 X80.0 Y50.0 Z5.0;                                     | Move tool to Point P5 i.e. 5 mm above the surface of workpiece                              |                        |
|   |     |        | N10                | G28 U0.0 V0.0 W0.0;                                       | Return to Reference Position                                                                |                        |
|   |     |        | N11                | M05 M09;                                                  | Spindle Stop, Coolant Stop                                                                  |                        |
|   |     |        | N12                | M30;                                                      | End of the Program and reset.                                                               |                        |
| : | i   | Diffe  | rentiate b         | etween pull broach and pus                                | sh broach                                                                                   | 04                     |
|   | Ans | (Any f | four Point.        | s = 01 Mark each)                                         |                                                                                             |                        |
|   |     | S.     | Pull Bro           | ach                                                       | Push broach                                                                                 |                        |
|   |     | N.     |                    |                                                           |                                                                                             |                        |
|   |     | 1      |                    | signed to pull through the ce by a special press.         | It is designed to push through the work piece by a special press.                           | Any four               |
|   |     | 2      | Broach i long slen | s entirely in tension and is der.                         | Because of the tendency to bend under compressive loads, push broach is short and stocky.   | Points =  01 Mark each |
|   |     | 3      |                    | rge no. of teeth and more be removed for each pass.       | It has fewer teeth on the broach and less material is removed for each pass.                |                        |
|   |     | 4      |                    | is removed in thick layers<br>ooth only from part of work | Holes are machined by push broaches only for sizing.                                        |                        |
|   |     | 5      | Widely u           | sed for external broaching.                               | Widely used for internal broaching.                                                         |                        |
|   |     | 6      | •                  | gressive cut teeth.                                       | It is solid type.                                                                           |                        |
|   | ii  | Draw   | a nomen            | clature of a plain milling cu                             | ıtter. Label all the elements.                                                              | 04                     |
|   |     |        |                    | rks Labelling = 02 Marks)                                 |                                                                                             | 1                      |

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

|   |     | PRIMARY CLEARANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|   |     | PITCH OF TEETH  PITCH OF TEETH  HOLE DIAMETER  FACE OF TOOTH  HEEL  OUTSIDE DIAMETER  FIGURE : Plain Milling Cutter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sketch =02<br>Marks<br>Labelling =<br>02 Marks |
| 4 | a   | Attempt any THREE of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                             |
| - | i   | Explain with neat sketch gear hobbing process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04                                             |
|   | Ans | (02 Marks For Sketch & 02 Marks For Explanation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V-T                                            |
|   | 2.2 | Axis of rotation  Figure: Gear Hobbing  In this process of gear generating a tool is used known as hob. Hob teeth are shaped to match the tooth space and are interrupted with grooves to provide cutting surfaces. It rotates about an axis normal to that of the gear blank, cutting into the rotating blank to generate the teeth as shown in figure.  It is the most accurate of the roughing processes since no repositioning of tool or blank is required and each tooth is cut by multiple hob-teeth, averaging out any tool errors. Excellent surface finish is achieved by this method and it is widely used for production of gears. | 02 Marks For Sketch & 02 Marks For Explanation |
|   | ii  | What is gear shaving? Explain with sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04                                             |
|   | Ans | (02 Marks for Explanation and 02 Marks for figure)  Gear Shaving Process:  Gear shaving process can be linear or rotary. In the linear type rack type cutter is used.  While rotary method employs a pinion cutter. The cutter teeth are serrated to form a series of cutting edges. To obtained relative sliding action between the tooth profile the work gear and shaving cutter are set up in the gear shaving machine with cross axes.                                                                                                                                                                                                    | 02 Marks for Explanation and 02 Marks          |
|   |     | Page No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01/20                                          |



# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

|      | Due to the sliding action very small amount of material from the gear tooth is removed                                                                                    | for figure     |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|      | and finished profile surface is obtained.                                                                                                                                 |                |
|      |                                                                                                                                                                           |                |
| iii  | Figure: Gear Shaving Tool with Serration  Explain wheel dressing and truing                                                                                               | 04             |
| Ans  | (02 Marks for Wheel Dressing and 02 Marks for Wheel Truing)                                                                                                               | V <del>1</del> |
| AllS | [Note:Sketch is not Compusary]                                                                                                                                            |                |
|      | Dressing of Wheel Dressing:                                                                                                                                               |                |
|      | Dressing of wheel Dressing.  Dressing removes loading and breaks away the glazed surface so that sharp abrasive                                                           |                |
|      | particles are again presented to work. A common type of star dresser is used to dress the                                                                                 |                |
|      | wheel. The dresser is held against the wheel and moved across the face of revolving                                                                                       |                |
|      | wheel. Dressing is done to regain grinding wheels cutting capability. The dressing                                                                                        | 02 Marks       |
|      | improves the surface finishing obtained while grinding. It is carried out where high degree of surface finishing is desired.                                              | for            |
|      |                                                                                                                                                                           | ·              |
|      | Truing of Grinding Wheel                                                                                                                                                  | Wheel          |
|      | Truing is the process of changing the shape of grinding wheel as it becomes worn from an original shape owing to the break-away of the abrasive and bond. This is done to | Dressing       |
|      | make wheel true and concentric to the bore. Truing and dressing are done from the same                                                                                    | and            |
|      | tool but not for the purpose. The truing can be done with the help of diamond tool but                                                                                    |                |
|      | the feed rate must not exceed 0.02 mm otherwise grooves may be cut on the wheel.                                                                                          | 02 Marks       |
|      | Raise handle to increase pressure                                                                                                                                         | for            |
|      |                                                                                                                                                                           | Wheel          |
|      |                                                                                                                                                                           | Truing         |
|      | Sparks indicate too little pressure                                                                                                                                       |                |
|      |                                                                                                                                                                           |                |
| iv   | Figure Dressing and Truing of Grinding Wheel What information is collected in a maintenance record                                                                        | 04             |
| Ans  | (02 Marks For Importance of Maintenance Record and 02 Marks Details of any one Record)                                                                                    |                |
|      | Importance of Maintenance Record:                                                                                                                                         |                |
|      | Maintenance records are the various documents of maintenance activities carried out by staff of                                                                           |                |
|      | the maintenance section. These documents are used for improvements as well as to get the                                                                                  |                |
|      | history of maintenance of a particular machine or equipment. The maintenance records include following reports.                                                           |                |
|      | Tonowing reports.                                                                                                                                                         |                |
|      | 1.Machine History Card.                                                                                                                                                   |                |
|      | 2. Preventive Maintenance Chart.                                                                                                                                          |                |
|      | 3. Break Down Report. WWW.truexams.com                                                                                                                                    |                |



(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

|                                       |      | •         | g these previous the machine.     | record an | d its anal         | ysis it    | is easy for far  | st decision         | making when faults |                                                                        |
|---------------------------------------|------|-----------|-----------------------------------|-----------|--------------------|------------|------------------|---------------------|--------------------|------------------------------------------------------------------------|
|                                       |      | occui iii | the machine.                      |           | Machin             | e Histo    | ory Card         |                     |                    | 02 Marks                                                               |
|                                       |      | Name of   | of company:                       |           |                    |            | Se               | ection:             |                    | For                                                                    |
|                                       |      | Machin    |                                   |           |                    |            |                  |                     |                    | Importance                                                             |
|                                       |      |           | ne Name :                         |           |                    |            |                  | [ake:               |                    | of                                                                     |
|                                       |      | Date      | Nature of fault                   | Action    | Los<br>hou         |            | Lost in Quantity | Remark              | Sign               | Maintenance                                                            |
|                                       |      |           |                                   |           |                    |            |                  |                     |                    | Record                                                                 |
|                                       |      | Check     | •                                 |           |                    |            | nance Chart      |                     | (aintenance)       |                                                                        |
|                                       |      |           | oany Name :<br>rtment /Section :_ |           |                    |            |                  |                     |                    | and                                                                    |
|                                       |      | •         | of machine :                      |           |                    |            |                  |                     |                    |                                                                        |
|                                       |      | Sr. No    |                                   | Check     | Stati              | us         | Status           | ance staff : Action | Remark             |                                                                        |
|                                       |      |           | Part                              | for       | requ               | ired       | observed         |                     |                    | 02 Marks                                                               |
|                                       |      | Checke    | d by                              |           |                    |            |                  | Anne                | oved by            | Details                                                                |
|                                       |      | CHECKE    |                                   |           |                    |            |                  |                     |                    |                                                                        |
|                                       |      | Compan    | of                                |           |                    |            |                  |                     |                    |                                                                        |
|                                       |      | Departm   | nent Section:                     |           | Maintenance Staff: |            |                  |                     |                    | any                                                                    |
|                                       |      | Sr.No     | Name of                           | Action    | Repair             |            | down             |                     |                    | one                                                                    |
|                                       |      |           | defective part                    |           | details            | Date       | Time             | Date                | Time               | Record                                                                 |
|                                       |      |           |                                   |           |                    |            |                  |                     | <u> </u>           |                                                                        |
|                                       | b    | Attemp    | t any ONE of the                  | followin  | g                  |            |                  |                     |                    |                                                                        |
|                                       | i    |           |                                   | of colu   | mn and             | knee 1     | ype milling      | machine.            | State function of  |                                                                        |
|                                       | Ans  |           | rks for Sketch &                  | Labelse   | and O.1 M          | ark oa     | ch for function  | on of any f         | our alamants)      |                                                                        |
|                                       | Alls | (02 Widi  |                                   |           |                    |            |                  |                     |                    |                                                                        |
| Over Arm Table Saddle Elevating Screw |      |           |                                   |           |                    |            | Column           |                     |                    | 02 Marks for Sketch & Labels and 01 Mark each for function of any four |
|                                       |      |           |                                   | ~         |                    | <b>T</b> 7 | T. 35            |                     |                    | elements                                                               |
|                                       |      |           | Figur                             | re : Colu | mn and             | Knee       | Type Millin      | g Machine           | 2                  |                                                                        |

www.truexams.com

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

|   |                                                | (180/1EC - 2/001 - 2015 Certified)                                                          |                      |  |  |  |  |  |  |
|---|------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|
|   |                                                | 1) <b>Base:</b> To support all the parts of milling machine.                                |                      |  |  |  |  |  |  |
|   |                                                | 2) Column: To support Spindle and drive mechanism.                                          |                      |  |  |  |  |  |  |
|   |                                                | 3) <b>Knee:</b> Can be moved vertically up and down on column by using elevating screw      |                      |  |  |  |  |  |  |
|   |                                                | 4) <b>Over-Arm:</b> To support other end of the arbor.                                      |                      |  |  |  |  |  |  |
|   |                                                | 5) <b>Saddle:</b> To move horizontally towards the column and away from column.             |                      |  |  |  |  |  |  |
|   |                                                | 6) <b>Table:</b> To move towards the left and right of operator and to clamp the work-piece |                      |  |  |  |  |  |  |
|   |                                                | with T- slots on it.                                                                        |                      |  |  |  |  |  |  |
|   |                                                | 7) <b>Spindle:</b> To hold rotary milling cutter.                                           |                      |  |  |  |  |  |  |
|   | ii                                             |                                                                                             |                      |  |  |  |  |  |  |
|   |                                                | How well you specify a grinding wheel? Explain with a suitable example.                     |                      |  |  |  |  |  |  |
|   | Ans                                            | (Correct Answer = 06 Marks)[Note: Figure is not Necessary]                                  |                      |  |  |  |  |  |  |
|   |                                                | Wheel Specification:                                                                        |                      |  |  |  |  |  |  |
|   |                                                | D                                                                                           |                      |  |  |  |  |  |  |
|   |                                                | P                                                                                           |                      |  |  |  |  |  |  |
|   |                                                | Grinding                                                                                    |                      |  |  |  |  |  |  |
|   |                                                | face                                                                                        |                      |  |  |  |  |  |  |
|   |                                                | ライン・スク 1 第27年12年 1                                                                          |                      |  |  |  |  |  |  |
|   |                                                | ├-H-                                                                                        |                      |  |  |  |  |  |  |
|   |                                                |                                                                                             |                      |  |  |  |  |  |  |
|   |                                                | Figure : Grinding Wheel                                                                     |                      |  |  |  |  |  |  |
|   |                                                |                                                                                             | Correct              |  |  |  |  |  |  |
|   | 450 X 60 X 101.6 ROS (200 X 20)W A 46 K 5 V 17 |                                                                                             |                      |  |  |  |  |  |  |
|   |                                                | <b>D</b> = <b>450</b> – Outer Diameter of Grinding Wheelin mm                               | Answer = 06<br>Marks |  |  |  |  |  |  |
|   |                                                | T= 60 – Thickness of Grinding Wheel in mm                                                   | Willia               |  |  |  |  |  |  |
|   |                                                | H= 101.6– Bore Diameter of Grinding Wheel in mm                                             |                      |  |  |  |  |  |  |
|   |                                                |                                                                                             |                      |  |  |  |  |  |  |
|   |                                                | W- Prefix. (Manufacturer's Symbol)(Optional)                                                |                      |  |  |  |  |  |  |
|   |                                                | <b>ROS</b> – Recess One Side of Diameter $P = 200$ mm and $F = 20$ mm                       |                      |  |  |  |  |  |  |
|   |                                                | $\mathbf{A}$ - Abrasive type is Al <sub>2</sub> O <sub>3</sub> .                            |                      |  |  |  |  |  |  |
|   |                                                | <b>46-</b> Abrasive Grain size is Medium.                                                   |                      |  |  |  |  |  |  |
|   |                                                | <b>K-</b> Grade is Medium.                                                                  |                      |  |  |  |  |  |  |
|   |                                                | 5 – Structure is dense                                                                      |                      |  |  |  |  |  |  |
|   |                                                | V – Type of Bond used is Vitrified.                                                         |                      |  |  |  |  |  |  |
|   |                                                | 17 - Suffix. (Manufacturer's Symbol)(Optional)                                              |                      |  |  |  |  |  |  |
|   |                                                |                                                                                             |                      |  |  |  |  |  |  |
| 5 |                                                | Attempt any FOUR of the following                                                           |                      |  |  |  |  |  |  |
|   |                                                |                                                                                             |                      |  |  |  |  |  |  |
|   | a                                              | Classify Boring machines. State different types of tools used                               |                      |  |  |  |  |  |  |
|   | Ans                                            | Classification of Boring Machines                                                           |                      |  |  |  |  |  |  |
|   | CHAL                                           | 1) Horizontal boring machine                                                                |                      |  |  |  |  |  |  |
|   |                                                | a) Table type                                                                               | ½ Mark each          |  |  |  |  |  |  |
|   |                                                | b) Floor type                                                                               | for 4 correct        |  |  |  |  |  |  |
|   |                                                | c) Planer type                                                                              | classification       |  |  |  |  |  |  |
|   |                                                | d) Multiple type                                                                            |                      |  |  |  |  |  |  |
|   |                                                | 2) Vertical boring machine                                                                  |                      |  |  |  |  |  |  |
|   |                                                | a) Vertical turret lathe                                                                    |                      |  |  |  |  |  |  |
|   |                                                | b) Standard vertical boring machine WWW.IIIUEXAMS.COM                                       |                      |  |  |  |  |  |  |
|   |                                                | Page No:                                                                                    | 04 / 20              |  |  |  |  |  |  |

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

|     | 3) Precision boring machine                                                          |               |
|-----|--------------------------------------------------------------------------------------|---------------|
|     | 4) Jig boring machine                                                                |               |
|     | a) Vertical milling type                                                             |               |
|     | b) Planer type                                                                       |               |
|     | Different types of tools used                                                        |               |
|     | [1] Boring by tool head                                                              | 1/2 Mark each |
|     | [2] Boring by boring bar                                                             | for any 4     |
|     | [3] Light Boring Tools                                                               | correct type  |
|     | [4] Forged Boring tools                                                              |               |
|     | [5] Double ended boring tool                                                         |               |
|     | [6] Counter boring tool                                                              |               |
|     | [7] Multiple edge boring tool                                                        |               |
| b   | State advantages and applications of turret lathe                                    |               |
| Ans | Advantages                                                                           |               |
|     | [1] More rigidity provided to the tool                                               | 1 mark each   |
|     | [2] Suitable for Larger and heavier loads                                            | for any 2     |
|     | [3] Larger works can be machined easily                                              | correct poin  |
|     | [4] Suitable for batch or mass production                                            | correct poin  |
|     | <u> </u>                                                                             |               |
|     | [5] More productive for quick engagement and over lapped functioning of the tools    |               |
|     | [6] Series of operations can be performed                                            |               |
|     | Applications                                                                         |               |
|     | [1] Suitable for heavy workpieces                                                    | 1 mark each   |
|     | [2] It finds application in machining longer workpieces                              | for any 2     |
|     | [3] More lengthwise movement allows it to machine for greater length                 | correct poin  |
|     | [4] Used in mass production system                                                   |               |
|     | Explain gang milling and straddle milling                                            |               |
| C   | Explain gang mining and stradule mining                                              | 2 Marks for   |
| Ans | Gang Milling:- The gang milling is the operation of machining several surfces of a   | explanation   |
|     | work piece simuutaneously by feeding the table against number of cutters having same |               |
|     | or different diameters mounted on the arbour of the machine. The methos saves much   |               |
|     | machining time and its widely used in repetitive work. The cutting speed of gang of  |               |
|     | cutter is calcualted from cutter of the large diameter.                              |               |
|     | Plain milling Side and face milling cutter                                           |               |
|     |                                                                                      |               |
|     | Arbor                                                                                |               |
|     |                                                                                      |               |
|     |                                                                                      |               |
|     | Workpiece                                                                            |               |
|     | workpiece                                                                            |               |
|     | Gang milling                                                                         |               |
|     | Figure:- Gang Milling WWW.TTUEXAMS.COM                                               |               |
|     | <del> </del>                                                                         |               |

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

**Straddle Milling:-** The straddle is the operation of production of flat vertical surfaces on the both sides of the workpiece by using two side cutters by providinbg coller between them for spacing. The straddle milling is very commonly used to produce square or hexagonal surfaces.

2 Marks for explanation

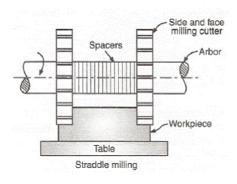



Figure: - Straddle Milling

### d What is centre less grinding? Explain any one with neat sketch

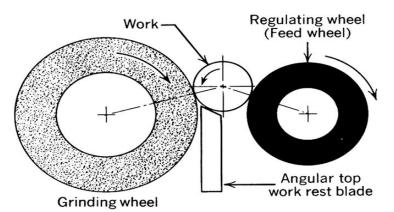
**Ans** Centreless grinding is a method of grinding exterior cylindrical, tapered and formed surfaces that are not held and rotated on centres.

The principle elements of the grinders are,

- 1) Grinding wheel
- 2) Work
- 3) Regulating wheel
- 4) Work rest

An angular adjustment of 0 to  $10^0$  is provided In the machine by tilting regulating wheel. The actual feed can be calculated by,

 $S = \pi dn \sin \alpha$ 


Where.

S= Feed in mm/min,

N = rpm

d= dia. Of regulating wheel,

 $\dot{\alpha}$ = angle of inclination if any



**Figure: Centreless Grinding** 

Both the wheels are rotated in the same direction. The work rest is located between the wheels, the work is rest upon the work rest and together with regulating wheel fed forward, forcing the work against grinding wheel. The axial movement of the work past the grinding wheel is obtained by tilting regulating wheel at a slight angle from horizontal.

2 Marks for explanation

1 Mark for

definition

&

1 Mark for diagram

www.truexams.com

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

| e     | Explain the working principle of honing. State its applications                                                                                                                                                      |             |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Ans   | Principle                                                                                                                                                                                                            |             |
|       | Honing is a grinding or a abrading process mostly finishing round holes by                                                                                                                                           |             |
|       | means of bonded abrasive stones called hones. Materials ranged from plastics, silver,                                                                                                                                |             |
|       | aluminium, brass and cast iron can be honed easily.                                                                                                                                                                  |             |
|       |                                                                                                                                                                                                                      |             |
|       |                                                                                                                                                                                                                      | 2 Marks fo  |
|       |                                                                                                                                                                                                                      | principle   |
|       |                                                                                                                                                                                                                      | principic   |
|       |                                                                                                                                                                                                                      | &           |
|       |                                                                                                                                                                                                                      | 1 1 1 1     |
|       |                                                                                                                                                                                                                      | 1 Mark ea   |
|       |                                                                                                                                                                                                                      |             |
|       | $\checkmark_2$ $_2$ $\checkmark$                                                                                                                                                                                     | applicatio  |
|       | Figure: Honning Tool                                                                                                                                                                                                 |             |
|       | Applications                                                                                                                                                                                                         |             |
|       | 1) Finishing automobile crankshafts journals                                                                                                                                                                         |             |
|       | 2) Finishing round holes                                                                                                                                                                                             |             |
|       | 3) Finishing hollow cylindrical parts                                                                                                                                                                                |             |
| f     | What are different types maintenance? Give suitable example of each                                                                                                                                                  |             |
| Ans   | Types of Maintenance                                                                                                                                                                                                 |             |
| 11113 | 1) Preventive maintenance:- Cleaning, Lubrication, Replacement of consumables                                                                                                                                        | 01 Mark ea  |
|       | like belts, bearings, gaskets etc, Reconditioning                                                                                                                                                                    | for any 4   |
|       | 2) Predictive maintenance:- Changing of oil in car, replacement of bearing due to                                                                                                                                    | correct poi |
|       | noise                                                                                                                                                                                                                | and Examp   |
|       | 3) Breakdown maintenance:- Machine tool failure on production floor                                                                                                                                                  |             |
|       | 4) Corrective maintenance:- Replacement of chain due to noise, replacement of                                                                                                                                        |             |
|       | bearing due to failure 5) Scheduled maintenance:- Overhauling of machine tool, Servicing of motor bike                                                                                                               |             |
|       | 3) Scheduled maintenance Overhauming of machine tool, Servicing of motor blke                                                                                                                                        |             |
| 6     | Attempt any FOUR of the following                                                                                                                                                                                    | 16          |
| a     | Explain the concept of Dry run and Jog mode                                                                                                                                                                          |             |
|       |                                                                                                                                                                                                                      |             |
| Ans   | Dry Run  A key that activates the dry run feature on a CNC machine. The dry run function checks                                                                                                                      |             |
|       | A key that activates the dry run feature on a CNC machine. The dry run function checks a program quickly without cutting parts.                                                                                      | 2 Marks fo  |
|       |                                                                                                                                                                                                                      | Explanation |
|       | A dry run (or a practice run) is a testing process where the effects of a possible failure                                                                                                                           | LAPIGNACIO  |
|       | A dry run (or a practice run) is a testing process where the effects of a possible failure are intentionally mitigated.                                                                                              | Explanation |
|       | A dry run (or a practice run) is a testing process where the effects of a possible failure are intentionally mitigated.  Example:- An aerospace company may conduct a "dry run" test of a jet's new pilot            | Explanation |
|       | are intentionally mitigated.                                                                                                                                                                                         | Explanation |
|       | are intentionally mitigated.  Example:- An aerospace company may conduct a "dry run" test of a jet's new pilot ejection seat while the jet is parked on the ground, rather than while it is in flight.  Objectives:- | Explanation |
|       | are intentionally mitigated.  Example:- An aerospace company may conduct a "dry run" test of a jet's new pilot ejection seat while the jet is parked on the ground, rather than while it is in flight.               | Explanation |



(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

| b<br>Ans | Jog Mode  The area of the machine control that allows an operator to move a selected axis. Jog keys are often called axis direction keys.  In JOG mode, the continuous movement of a tool in a direction along a selected axis. Jog mode is mostly used to travel the CNC machine table slide for movement of table along X-axis and Z-axis.  CNC machine works manually like conventional machines.  Explain how a capstan lathe is different from a simple lathe  It is production lathe used to manufacture any number of identical pieces in the minimum time. The capstan and turret lathe consists of a bed, all geared headstock and a saddle on which a four station tool post is mounted to hold four different tools. A series of operation can be perform such as turning, drilling, boring, reaming etc  [1] The turret of capstan lathe is mounted on slides on the saddle  [2] Less rigidity provided to the tool  [3] High production rate as fast cut is possible  Sketch and label basic parts of a horizontal broaching machine  Tool Support  Adopter  Tool Support  Adopter  Tool Support  Adopter  Tool Support  Adopter | 2 Marks for Explanation  4 Marks for explanation  3 Marks for neat sketch  & 1 Mark for Correct labeling |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| d        | Figure: Horizontal Broaching Machine.  Enlist grinding wheel safety precautions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |
| Ans      | Safety Precautions:-  1) Ensure proper mounting of wheel 2) Ensure fitting of wheel 3) Check Proper balancing 4) Check guarding arrangement on machine for wheel. 5) Check proper truing of grinding wheel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 Mark each<br>for any 4<br>correct points                                                               |
|          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          |

www.truexams.com



(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

#### Explain repair cycle analysis with a suitable example

#### Ans

### **Repair Cycle Analysis**

The repetitive performance of maintenance activities between two overhauling (inspection) is called as repair cycle analysis.

For maintenance planning repair cycle analysis is important.

Need of repair cycle analysis:

- It gives an idea about staff required.
- Number of small/minor repairs.
- Number of major repairs.
- Number of spare parts (quantity required for maintenance)

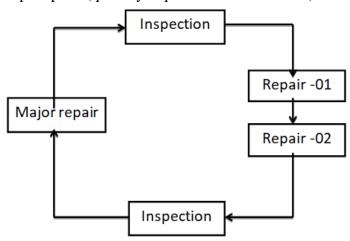



Figure: Repair Cycle Analysis

#### **Example :- Repairing for Misalignment and noise of shaft in machine tool**

#### Repair cycle analysis involves:

#### [1] Primary Inspection:-

Proper examination of the machine tool is carried to identify the problem. In this stage root cause of the problem can be found out such as which part creates the noise. Whether it shaft is misaligned due to bending or improper fitting in bearing?

#### [2] Small Repair-01:-

In this stage as per the problem complexity cleaning or lubrication, type of small repair is performed.

#### [3] Small Repair-02:

After repair one if the problem still exists another small repairs like alignment, proper assembly, nut and bolt tightening, lubrication is performed.

#### [4] Inspection:-

After small repair the machine tool is inspected for its performance.

#### [5]Major repair:-

If the small problem exists after small repair the major repair takes place like replacement of shaft or bearing is required.

### [6] Inspection:

After major repair the inspection carried out for effective and efficient performance of that machine tool.

2 Marks for explanation

&

2 Marks for any correct Example